Proofs and Dialogue : the Ludics view

Alain Lecomte

Laboratoire : "Structures formelles du langage", Paris 8 Université

February, 2011 Tübingen with collaboration of Myriam Quatrini

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Table of Contents

Ludics as a pre-logical framework

- A polarized framework
- A localist framework
- 2 Designs as paraproofs
 - Rules
 - Daimon and Fax
 - Normalization

3 The Game aspect

- Plays and strategies
- The Ludics model of dialogue

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

A polarized framework A localist framework

Where Ludics come from?

Ludics is a theory elaborated by J-Y. Girard in order to rebuild logic starting from the notion of *interaction*.

It starts from the concept of **proof**, as was investigated in the framework of **Linear Logic**:

- Linear Logic may be polarized (→ negative and positive rules)
- Linear Logic leads to the important notion of proof-net
 (→ being a proof is more a question of connections than a question of formulae to be proven) → loci

イロン 不良 とくほう 不良 とうほ

A polarized framework A localist framework

Polarization

Results on polarization come from those on **focalization** (Andréoli, 1992)

some connectives are *deterministic* and *reversible* (= negative ones) : their right-rule, which may be read in both directions, may be applied in a deterministic way:

イロン 不良 とくほう 不良 とうほ

Polarization

A polarized framework A localist framework

 the other connectives are *non-deterministic* and *non-reversible* (= **positive** ones) : their right-rule, which cannot be read in both directions, may not be applied in a deterministic way (from bottom to top, there is a choice to be made) :

Example

$$\frac{\vdash A, \Gamma \vdash B, \Gamma'}{\vdash A \otimes B, \Gamma, \Gamma'} [\otimes] \quad \frac{\vdash A, \Gamma}{\vdash A \oplus B, \Gamma} [\oplus_g] \quad \frac{\vdash B, \Gamma}{\vdash A \oplus B, \Gamma} [\oplus_d]$$

ヘロア 人間 アメヨア 人口 ア

A polarized framework A localist framework

The Focalization theorem

- every proof may be put in such a form that :
 - as long as there are negative formulae in the (one-sided) sequent to prove, choose one of them at random,
 - as soon as there are no longer negative formulae, choose a positive one and then continue to focalize it
- we may consider positive and negative "blocks" → synthetic connectives
- convention : the negative formulae will be written as positive but on the left hand-side of a sequent → fork

イロン 不良 とくほう 不良 とうほ

A polarized framework A localist framework

Hypersequentialized Logic

Formulae:

$$F = O|1|P|(F^{\perp}\otimes\cdots\otimes F^{\perp})\oplus\cdots\oplus(F^{\perp}\otimes\cdots\otimes F^{\perp})|$$

Rules :

axioms :

$$\overline{P \vdash P, \Delta} \qquad \overline{\vdash 1, \Delta} \qquad \overline{O \vdash \Delta}$$

Iogical rules :

$$\begin{array}{cccc} \vdash A_{11}, \dots, A_{1n_1}, \Gamma & \dots & \vdash A_{p1}, \dots, A_{pn_p}, \Gamma \\ \hline \\ \hline \hline (A_{11}^{\perp} \otimes \dots \otimes A_{1n_1}^{\perp}) \oplus \dots \oplus (A_{p1}^{\perp} \otimes \dots \otimes A_{pn_p}^{\perp}) \vdash \Gamma \\ \hline \\ \hline \\ \hline \\ \hline A_{i1} \vdash \Gamma_1 & \dots A_{in_i} \vdash \Gamma_p \\ \hline \\ \hline \vdash (A_{11}^{\perp} \otimes \dots \otimes A_{1n_1}^{\perp}) \oplus \dots \oplus (A_{p1}^{\perp} \otimes \dots \otimes A_{pn_p}^{\perp}), \Gamma \\ \hline \\ \end{array}$$
where $\cup \Gamma_k \subset \Gamma^1$ and, for $k, l \in \{1, \dots, p\}, \Gamma_k \cap \Gamma_l = \emptyset.$
• cut rule :

AI

$$\frac{A \vdash B, \Delta \qquad B \vdash \Gamma}{A \vdash \Delta, \Gamma}$$
ain Lecomte Proofs and Dialogue : the Ludics view

ъ

Remarks

A polarized framework A localist framework

- all propositional variables *P* are supposed to be **positive**
- formulae connected by the positive ⊗ and ⊕ are negative (positive formulae are maximal positive decompositions)
- (... ⊗ ... ⊗ ...) ⊕ (... ⊗ ... ⊗ ...).. ⊕ (... ⊗ ... ⊗ ...) is not a restriction because of distributivity ((A ⊕ B) ⊗ C ≡ (A ⊗ C) ⊕ (B ⊗ C))

イロン 不良 とくほう 不良 とうほ

A polarized framework A localist framework

Interpretation of the rules

• Positive rule :

- choose $i \in \{1, ..., p\}$ (a \oplus -member)
- 2 then decompose the context Γ into disjoint pieces

Negative rule :

- nothing to choose
- simply enumerates all the possibilities

First interpretation, as questions :

- Positive rule : to choose a component where to answer
- Negative rule : the range of possible answers

イロン 不良 とくほう 不良 とうほ

A polarized framework A localist framework

The daimon

Suppose we use a rule:

 $\frac{1}{|\Gamma|} (\mathsf{stop!})$

for any sequence Γ , that we use when and only when we cannot do anything else...

- the system now "accepts" proofs which are not real ones
- if (stop!) is used, this is precisely because... the process does not lead to a proof!
- (stop!) is a paralogism
- the proof ended by (stop!) is a paraproof
- cf. (in classical logic) it could give a distribution of truth-values which gives a counter-example (therefore also: *counter-proof*)

A polarized framework A localist framework

A reminder of proof-nets

$$\vdash A^{\perp} \wp B^{\perp}, (A \otimes B) \otimes C, C^{\perp}$$

$$= A, A^{\perp} \vdash B, B^{\perp}$$

$$= A, A^{\perp} \vdash B, B^{\perp}$$

$$\vdash A \otimes B, A^{\perp}, B^{\perp} \vdash C, C^{\perp}$$

$$= (A \otimes B) \otimes C, A^{\perp}, B^{\perp}, C^{\perp}$$

$$= (A \otimes B) \otimes C, A^{\perp}, B^{\perp}, C^{\perp}$$

$$= (A \otimes B) \otimes C, A^{\perp}, B^{\perp}, C^{\perp}$$

$$= (A \otimes B) \otimes C, A^{\perp}, B^{\perp}, C^{\perp}$$

$$= (A \otimes B) \otimes C, A^{\perp} \otimes B^{\perp} + C, C^{\perp}$$

$$= (A \otimes B) \otimes C, A^{\perp} \otimes B^{\perp}, C^{\perp}$$

$$= (A \otimes B) \otimes C, A^{\perp} \otimes B^{\perp}, C^{\perp}$$

$$= (A \otimes B) \otimes C, A^{\perp} \otimes B^{\perp}, C^{\perp}$$

$$= (A \otimes B) \otimes C, A^{\perp} \otimes B^{\perp}, C^{\perp}$$

$$= (A \otimes B) \otimes C, A^{\perp} \otimes B^{\perp}, C^{\perp}$$

$$= (A \otimes B) \otimes C, A^{\perp} \otimes B^{\perp}, C^{\perp}$$

$$= (A \otimes B) \otimes C, A^{\perp} \otimes B^{\perp}, C^{\perp}$$

$$= (A \otimes B) \otimes C, A^{\perp} \otimes B^{\perp}, C^{\perp}$$

$$= (A \otimes B) \otimes C, A^{\perp} \otimes B^{\perp}, C^{\perp}$$

$$= (A \otimes B) \otimes C, A^{\perp} \otimes B^{\perp}, C^{\perp}$$

イロン 不得 とくほ とくほう 一日

A polarized framework A localist framework

<ロ> (四) (四) (注) (三) (三)

We define a *proof structure* as any such a graph built only by means of these links such that each formula is the conclusion of exactly one link and the premiss of at most one link.

Criterion

A polarized framework A localist framework

Definition (Correction criterion)

correction criterion A proof structure is a proof net if and only if the graph which results from the removal, for each \wp link ("par" link) in the structure, of one of the two edges is connected and has no cycle (that is in fact a tree).

・ロト ・ 理 ト ・ ヨ ト ・

э

A polarized framework A localist framework

<ロ> (四) (四) (三) (三) (三)

A polarized framework A localist framework

<ロ> (四) (四) (三) (三) (三)

Rules Daimon and Fax Normalization

Loci

Rules do not apply to contents but to addresses

Example	
$\vdash oldsymbol{e}^{\perp},oldsymbol{c}$	$dash oldsymbol{e}^{ot}, oldsymbol{d}$
$\vdash \boldsymbol{e}^{\perp}, \boldsymbol{I} \qquad \overline{\vdash \boldsymbol{e}^{\perp}, \boldsymbol{c} \oplus \boldsymbol{d}}$	$\vdash \boldsymbol{e}^{\perp}, \boldsymbol{l} \qquad \overline{\vdash \boldsymbol{e}^{\perp}, \boldsymbol{c} \oplus \boldsymbol{d}}$
$egin{array}{c c } ec eta & eta $	$oxed{} artheta$ $artheta$ $oxed{}$ $artheta$ $oxed{}$ $artheta$ (artheta $artheta$ (artheta) a
$\overline{} \vdash e^{\perp}\wp \left(\textit{I}\&(\textit{c} \oplus \textit{d}) \right)$	$\overline{} \vdash e^{\perp} \wp \left(l \& (c \oplus d) \right)$

under a focused format :

$$\frac{\begin{array}{c} c^{\perp} \vdash e^{\perp} \\ \vdash e^{\perp}, \textit{I} \end{array} }{e \otimes (\textit{I}^{\perp} \oplus (\textit{c} \oplus \textit{d})^{\perp}) \vdash}$$

$$egin{array}{c|c|c|c|c|c|c|} & \underline{d^{\perp} \vdash e^{\perp}} \ & \overline{\vdash e^{\perp}, c \oplus d} \ \hline & e \otimes (l^{\perp} \oplus (c \oplus d)^{\perp}) \vdash \end{array}$$

Ludics as a pre-logical framework Designs as paraproofs Daimon and Fax Normalization

with only loci:

$$\frac{ \underbrace{ \xi \mathbf{.3.1} \vdash \xi \mathbf{1} }_{\xi \mathbf{.1}, \xi \mathbf{.2}} \underbrace{ \frac{ \xi \mathbf{.3.1} \vdash \xi \mathbf{.1} }_{\vdash \xi \mathbf{.1}, \xi \mathbf{.3}} }_{\xi \mathbf{.5.2}} \qquad \qquad \underbrace{ \underbrace{ \underbrace{ \xi \mathbf{.3.2} \vdash \xi \mathbf{1} }_{\vdash \xi \mathbf{.1}, \xi \mathbf{.3}} }_{\xi \mathbf{.5.2}}$$

Alain Lecomte Proofs and Dialogue : the Ludics view

Rules Daimon and Fax Normalization

Rules

Definition positive rule

$$\frac{\dots \quad \xi \star i \vdash \Lambda_i \quad \dots}{\vdash \xi, \Lambda} (+, \xi, I)$$

I ∈ I

all Λ_i's pairwise disjoint and included in Λ

Definition negative rule

$$\frac{\dots \quad \vdash \xi \star J, \Lambda_J \quad \dots}{\xi \vdash \Lambda} \left(-, \xi, \mathcal{N} \right)$$

daimon

Rules Daimon and Fax Normalization

Dai

 $\frac{1}{\vdash \Lambda}$

it is a positive rule (something we choose to do)

it is a paraproof

Alain Lecomte Proofs and Dialogue : the Ludics view

イロン 不得 とくほ とくほう 一日

Rules Daimon and Fax Normalization

Is there a identity rule?

- No, properly speaking (since there are lo longer atoms!)
- two loci cannot be identified
- there only remains the opportunity to recognize that two sets of addresses correspond to each other by displacement : *Fax*

$$Fax_{\xi,\xi'} = \frac{\underbrace{\dots \quad Fax_{\xi_{i_1},\xi'_{i_1}} \quad \dots}_{\dots \xi' \star i \vdash \xi \star i \dots}}_{\underbrace{\dots \quad \vdash \ \xi \star J_1, \xi' \quad \dots}_{\xi \vdash \xi'}} (+,\xi',J_1) (-,\xi,\mathcal{P}_f(\mathbb{N}))$$

イロン 不良 とくほう 不良 とうほ

Rules *Daimon* and *Fax* Normalization

Infinite proofs

- $\mathcal{F}ax....$ is **infinite**! (cf. the directory $\mathcal{P}_f(\mathbb{N})$)
- it provides a way to explore any "formula" (a tree of addresses) at any depth

イロン 不良 とくほう 不良 とうほ

Rules *Daimon* and *Fax* Normalization

Designs

Definition

A **design** is a tree of **forks** $\Gamma \vdash \Delta$ the root of which is called the **base** (or conclusion), which is built only using :

- daimon
- o positive rule
- negative rule

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Rules *Daimon* and *Fax* Normalization

a design...

- a negative step gives a fixed focus and a set of ramifications,
- on such a basis, a positive step chooses a focus and a ramification

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Rules *Daimon* and *Fax* Normalization

An illustration

- positive rule : a question (where will you go next week ?)
- negative rule : a scan of possible answers is provided, (*Roma* and *Naples* or *Rome* and *Florence*)
- in case of the choice 1 : positive rule on the base "Roma", new questions (*with whom?* and *by what means?*)
- in case of choice 2 : positive rule on the base "Florence", new questions (with whom? and how long will you stay?)

ヘロン ヘアン ヘビン ヘビン

Rules Daimon and Fax Normalization

Normalization

- no explicit cut-rule in Ludics
- but an implicit one : the meeting of same addresses with opposite polarity

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Rules Daimon and Fax Normalization

Example

Alain Lecomte Proofs and Dialogue : the Ludics view

・ロト ・ 理 ト ・ ヨ ト ・

3

Ludics as a pre-logical framework	Rules
Designs as paraproofs	Daimon and Fax
The Game aspect	Normalization

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Ludics as a pre-logical framework Rules Designs as paraproofs Daimon and Fax The Game aspect Normalization

which is rewritten in:

And so on ...

Alain Lecomte Proofs and Dialogue : the Ludics view

イロン 不得 とくほ とくほう 一日

When the interaction meets the **daimon**, it converges. The two interacting designs are said **orthogonal**

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Otherwise the interaction is said divergent.

イロン 不得 とくほ とくほう 一日

Rules Daimon and Fax Normalization

Normalization, formally - 1- Closed nets

Namely, a **closed net** consists in a cut between the two following designs:

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Rules Daimon and Fax Normalization

Orthogonality

• if κ is the daimon, then the normalized form is :

(this normalised net is called dai)

- if $\kappa = (\xi, I)$, then if $I \notin \mathcal{N}$, normalization fails,
- if κ = (ξ, I) and I ∈ N, then we consider, for all i ∈ I the design D_i, sub-design of D of basis ξ ★ i ⊢, and the sub-design E' of E, of basis ⊢ ξ ★ I, and we replace D and E by, respectively, the sequences of D_i and E'.

イロン 不良 とくほう 不良 とうほ

In other words, the initial net is replaced by :

with a cut between each $\xi \star i_j \vdash$ and the corresponding "formula" $\xi \star i_i$ in the design \mathcal{E}'

イロン 不良 とくほう 不良 とうほ

Ludics as a pre-logical framework Rules
Designs as paraproofs
The Game aspect Normalization

An example of normalization which does not yield dai

 $\mathcal{F}ax_{\xi\vdash\rho}$ against a design \mathcal{D} of basis $\vdash \xi$

Let $\ensuremath{\mathcal{D}}$ the design :

$$\frac{\mathcal{D}_1}{\xi \star 1 \vdash} \quad \frac{\mathcal{D}_2}{\xi \star 2 \vdash} \\ \vdash \xi$$

Normalization selects first the slice corresponding to $\{1, 2\}$, after elimination of the first cut, it remains:

$$\frac{\mathcal{D}_1}{\xi \star 1 \vdash} \qquad \frac{\mathcal{D}_2}{\xi \star 2 \vdash} \qquad \frac{\mathcal{F}ax}{\frac{\rho \star 1 \vdash \xi \star 1}{\vdash \xi \star 1}} \qquad \frac{\mathcal{F}ax}{\frac{\rho \star 2 \vdash \xi \star 2}{\vdash \xi \star 1, \xi \star 2, \rho}}$$

and finally:

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Rules Daimon and Fax Normalization

suite

$$\frac{\mathcal{D}_1'}{\rho \star \mathbf{1} \vdash} \quad \frac{\mathcal{D}_2'}{\rho \star \mathbf{2} \vdash} \\ \vdash \rho$$

where, in \mathcal{D}'_1 and \mathcal{D}'_2 , the address ξ is systematically relaced by ρ .

イロン 不得 とくほ とくほう 一日

Rules Daimon and Fax Normalization

The separation theorem

Theorem

If $\mathcal{D} \neq \mathcal{D}'$ then there exists a counterdesign \mathcal{E} which is orthogonal to one of $\mathcal{D}, \mathcal{D}'$ but not to the other.

Hence the fact that: the objects of ludics are completely defined by their interactions

- a design \mathcal{D} inhabits its **behaviour** (= like its **type**)
- a behaviour is a set of designs which is stable by bi-orthogonality (𝔅 = 𝔅^{⊥⊥})

イロト 不得 とくほ とくほ とうほ

Plays and strategies The Ludics model of dialogue

The game aspect

A slight change of vocabulary: step in a proof positive step negative step branch of a design design

action positive action **negative** action play in a game strategy

 $(+, \xi, I)$ $(-,\zeta,J)$ chronicle design (dessein) as a set of chronicles

ヘロア 人間 アメヨア 人口 ア

э

Example $\frac{\begin{array}{c} 011 \vdash & 012 \vdash 02 \\ \hline \vdash 01, 02 \\ \hline & \left(+, 01, \{1, 2\}\right) \\ \hline & \left(-, 0, \{\{1, 2\}, \{1, 3\}\}\right) \\ \hline & \left(-, -, \{1, 2\}, \{1, 3\}\right) \\ \hline & \left(-, -, \{1, 2\}, \{1, 3\}, \{1, 3\}\right) \\ \hline & \left(-, -, \{1, 2\}, \{1, 3$

Example

$$(+,<>,0), (-,0,\{1,2\}), (+,01,\{1,2\}) \\ (+,<>,0), (-,0,\{1,3\}), (+,\dagger)$$

Alain Lecomte Proofs and Dialogue : the Ludics view

イロン 不得 とくほ とくほう 一日

Plays and strategies The Ludics model of dialogue

Dialogue in Ludics

The archetypal figure of interaction is provided by two intertwined processes the successive times of which, alternatively positive and negative, are opposed by pairs.

Ludics	Dialogue	
Positive rule	performing an intervention or commiting oneself (Brandom)	
Negative rule	recording or awaiting or giving authorization	
Daïmon	giving up or ending an exchange	

・ロト ・ 理 ト ・ ヨ ト ・

э

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

э

Plays and strategies The Ludics model of dialogue

The daimon rule

—† ⊢ Δ

- In proof reading this represents the fact to abandon your proof search or your counter-model attempt.
- This represents the fact to close a dialogue (by means of some explicite signs : "well", "OK", ... or implicitely because it is clear that an answer was given, an argument was accepted and so on...).

イロト 不得 とくほ とくほ とうほ

Plays and strategies The Ludics model of dialogue

Convergence and divergence

- Convergence in dialogue holds as long as commitments of one speaker belong to authorizations provided by the other speaker (pragmatics: "Be relevant!" replaced by "Keep convergent!")
- orthogonality = private communication
- non-orthogonality : normalization may yield side effects : public results of communication

イロト 不得 とくほ とくほ とうほ

Plays and strategies The Ludics model of dialogue

Examples

Example of two elementary dialogues:

Alain Lecomte Proofs and Dialogue : the Ludics view

Plays and strategies The Ludics model of dialogue

Examples

The locus σ is a place for recording the answer:

Alain Lecomte Proofs and Dialogue : the Ludics view

Plays and strategies The Ludics model of dialogue

The interaction reduces to:

It is the function of $\mathcal{F}ax$ to interact in such a way that the design anchored on ξ_{010} is transferred to the address σ , thus providing the answer.

Alain Lecomte Proofs and Dialogue : the Ludics view

イロン 不良 とくほう 不良 とうほ

Plays and strategies The Ludics model of dialogue

The second dialogue is ill-formed: - Have you a car?

- No, I have no car
- * Of what mark?

Alain Lecomte

Proofs and Dialogue : the Ludics view

Plays and strategies The Ludics model of dialogue

Modelling dialogue

Intervention of S	Current state	Intervention of A
\mathfrak{S}_1		
	$\mathfrak{E}_1 = \mathfrak{S}_1$	
		\mathfrak{A}_2
	$\mathfrak{E}_2 = [[\mathfrak{E}_1,\mathfrak{A}_2]]$	
\mathfrak{S}_3		
	$\mathfrak{E}_3 = [[\mathfrak{E}_2,\mathfrak{S}_3]]$	
-		-
:		

Alain Lecomte Proofs and Dialogue : the Ludics view

(ロ) (同) (ヨ) (ヨ) (ヨ) (ヨ) (の)

Plays and strategies The Ludics model of dialogue

Rebuilding Logic

behaviours

operations on behaviours

Example

Additives :

- if **G** and **H** are two disjoint negative behaviours : **G** & **H** = **G** \cap **H**
- if they are positive $\mathbf{G} \oplus \mathbf{H} = \mathbf{G} \sqcup \mathbf{H} (= (\mathbf{G} \cup \mathbf{H})^{\perp \perp})$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

-

Plays and strategies The Ludics model of dialogue

Rebuilding Logic-2

Example

Multiplicatives :

- Let us take two positive designs \mathcal{D} and \mathcal{D}' starting from respectively $(+, \xi, I)$ and $(+, \xi, J)$, we may make a new design starting from $(+, \xi, I \cup J)$. The problem is : what to do with $I \cap J$?
 - $\bullet\,$ we may introduce a priority \rightarrow non-commutative \otimes
 - or we may stop those branches by $\mathcal{D}ai_-$ (a special design ended by $\dagger) \to \otimes$

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Plays and strategies The Ludics model of dialogue

Further developments

- K. Terui's c-designs : computational designs
 - from absolute addresses to relative addresses : variables of designs
 - ramifications replaced by named actions with an arity
 - finite objects: generators, in case of infinite designs
 - c-designs are terms which generalize λ-terms(simultaneous and parallel reductions via several channels)

• inclusion of **exponentials** (authorizes replay)

The introduction of variables allows to deal with designs with variables which correspond to designs with partial information (the whole future may stay unknown)

・ロト ・ 理 ト ・ ヨ ト ・

Plays and strategies The Ludics model of dialogue

- usually, the logician lives in a dualist universe:
 - proof vs (counter) model
- with ludics, he lives in a monist universe
 - proof vs counter proof
- proofs (**dessins**) and strategies (**desseins**) are two faces of the same objects
- formulae (= types) are behaviours
- behaviours can be decomposed by means of &, ⊕, ⊗, thus providing the analogues of formulae of Linear (or Affine?) Logic
- no atoms : such decompositions may be infinite!
- this opens the field to considering very ancient conceptions of Logic (Nāgārjuna) for which there are no grounded foundations of our assertions

Plays and strategies The Ludics model of dialogue

- usually, the logician lives in a dualist universe:
 - proof vs (counter) model
- with ludics, he lives in a monist universe
 - proof vs counter proof
- proofs (dessins) and strategies (desseins) are two faces of the same objects
- formulae (= types) are behaviours
- behaviours can be decomposed by means of &, ⊕, ⊗, thus providing the analogues of formulae of Linear (or Affine?) Logic
- no atoms : such decompositions may be infinite!
- this opens the field to considering very ancient conceptions of Logic (Nāgārjuna) for which there are no grounded foundations of our assertions

Plays and strategies The Ludics model of dialogue

- usually, the logician lives in a dualist universe:
 - proof vs (counter) model
- with ludics, he lives in a monist universe
 - proof vs counter proof
- proofs (dessins) and strategies (desseins) are two faces of the same objects
- formulae (= types) are behaviours
- behaviours can be decomposed by means of &, ⊕, ⊗, thus providing the analogues of formulae of Linear (or Affine?) Logic
- no atoms : such decompositions may be infinite!
- this opens the field to considering very ancient conceptions of Logic (Nāgārjuna) for which there are no grounded foundations of our assertions

Plays and strategies The Ludics model of dialogue

- usually, the logician lives in a dualist universe:
 - proof vs (counter) model
- with ludics, he lives in a monist universe
 - proof vs counter proof
- proofs (dessins) and strategies (desseins) are two faces of the same objects
- formulae (= types) are behaviours
- behaviours can be decomposed by means of &, ⊕, ⊗, thus providing the analogues of formulae of Linear (or Affine?) Logic
- no atoms : such decompositions may be infinite!
- this opens the field to considering very ancient conceptions of Logic (Nāgārjuna) for which there are no grounded foundations of our assertions

Plays and strategies The Ludics model of dialogue

- usually, the logician lives in a dualist universe:
 - proof vs (counter) model
- with ludics, he lives in a monist universe
 - proof vs counter proof
- proofs (dessins) and strategies (desseins) are two faces of the same objects
- formulae (= types) are behaviours
- behaviours can be decomposed by means of &, ⊕, ⊗, thus providing the analogues of formulae of Linear (or Affine?) Logic
- no atoms : such decompositions may be infinite!
- this opens the field to considering very ancient conceptions of Logic (**Nāgārjuna**) for which *there are no grounded foundations of our assertions*

Plays and strategies The Ludics model of dialogue

- usually, the logician lives in a dualist universe:
 - proof vs (counter) model
- with ludics, he lives in a monist universe
 - proof vs counter proof
- proofs (dessins) and strategies (desseins) are two faces of the same objects
- formulae (= types) are behaviours
- behaviours can be decomposed by means of &, ⊕, ⊗, thus providing the analogues of formulae of Linear (or Affine?) Logic
- no atoms : such decompositions may be infinite!
- this opens the field to considering very ancient conceptions of Logic (Nāgārjuna) for which there are no grounded foundations of our assertions