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A First Dialogue

You (Chris) Me (George)

There seems to be no “good” proof
system for Łukasiewicz logic. . .

But I have just found an elegant
hypersequent calculus!

Nice! But what do hypersequents
mean in this system?

Well, I have a complicated
translation into the logic. . .

Perhaps dialogue games provide
an answer?

(Daniele: Have you considered these papers by Robin Giles?)

Aha! Hypersequent proofs are
strategies in Giles’s game.

But can we make this formal?
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This Talk

I will address these questions:

What is Giles’s game?
How does it relate to Łukasiewicz logic?
How does it relate to the proof theory of Łukasiewicz logic?
What more can be done with this approach?

G. Metcalfe and C. G. Fermüller. Giles’s Game and the Proof Theory
of Łukasiewicz Logic. Studia Logica, 92(1):27–61 (2009).
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An Overview of the Game

In the 1970s, Robin Giles introduced a two-player dialogue game

You claim. . . I claim. . .

ϕ1, . . . , ϕn ψ1, . . . , ψm

consisting of two parts. . .

1 Atomic statements refer to experiments with a fixed probability of
a positive result, and the players pay 1C to their opponent for
each incorrect statement – the winner expects not to lose money.

2 Compound statements are attacked or granted by the opposing
player based on natural dialogue rules.

R. Giles. A non-classical logic for physics.
Studia Logica, 4(33):399–417 (1974).

R. Giles. Łukasiewicz logic and fuzzy set theory
International Journal of Man-Machine Studies, 8(3):313–327 (1976).
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Elementary States

Atoms a,b are propositional variables p,q representing atomic
statements, and the constant ⊥ representing a statement that is
always false.

Each atom a may be read as

“the (repeatable) elementary (yes/no) experiment Ea yields a
positive result."

Elementary states consist of a multiset of atoms [a1, . . . ,am] asserted
by you and a multiset of atoms [b1, . . . ,bn] asserted by me, written

[a1, . . . ,am b1, . . . ,bn].

George Metcalfe (University of Bern) Giles’s Game and Łukasiewicz Logic February 2011 5 / 36



Elementary States

Atoms a,b are propositional variables p,q representing atomic
statements, and the constant ⊥ representing a statement that is
always false.

Each atom a may be read as

“the (repeatable) elementary (yes/no) experiment Ea yields a
positive result."

Elementary states consist of a multiset of atoms [a1, . . . ,am] asserted
by you and a multiset of atoms [b1, . . . ,bn] asserted by me, written

[a1, . . . ,am b1, . . . ,bn].

George Metcalfe (University of Bern) Giles’s Game and Łukasiewicz Logic February 2011 5 / 36



Elementary States

Atoms a,b are propositional variables p,q representing atomic
statements, and the constant ⊥ representing a statement that is
always false.

Each atom a may be read as

“the (repeatable) elementary (yes/no) experiment Ea yields a
positive result."

Elementary states consist of a multiset of atoms [a1, . . . ,am] asserted
by you and a multiset of atoms [b1, . . . ,bn] asserted by me, written

[a1, . . . ,am b1, . . . ,bn].

George Metcalfe (University of Bern) Giles’s Game and Łukasiewicz Logic February 2011 5 / 36



Risk

For every run of the game, a fixed risk value 〈q〉 ∈ [0,1] is associated
with each variable q, where 〈⊥〉 = 1.

The risk associated with a multiset of atoms is then

〈[a1, . . . ,am]〉 = 〈a1〉+ . . .+ 〈am〉.

I.e., my risk corresponds to the amount that I expect to pay to you.

For an elementary state [a1, . . . ,am b1, . . . ,bn],

〈a1, . . . ,am〉 ≥ 〈b1, . . . ,bn〉

expresses that I do not expect any loss (possibly some gain).
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An Example

Consider the elementary state

[p q,q].

The experiment Ep has to be performed once and Eq twice. If, e.g., all
three outcomes are negative, then I owe you 2C and you owe me 1C.

For 〈p〉 = 〈q〉 = 0.5, I expect an average loss of 0.5C.

For 〈p〉 = 0.8 and 〈q〉 = 0.3, I expect an average gain of 0.2C.
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Compound Statements and Dialogue States

Compound statements are represented by formulas built (for now)
from variables, the constant ⊥, and the binary connective→.

We can also consider the connectives ∧, ∨, and �; however, in
Łukasiewicz logic these are definable using→ and ⊥.

Dialogue states (d-states) consist of finite multisets [ϕ1, . . . , ϕn] and
[ψ1, . . . , ψn] of formulas asserted by you and me, respectively, written

[ϕ1, . . . , ϕn ψ1, . . . , ψn].
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Implication

The dialogue rule for implication is:

If I assert ϕ→ ψ, then whenever you choose to attack this
statement by asserting ϕ, I must assert also ψ. (And vice
versa, i.e., for the roles of me and you switched.)

A player may also choose to never attack the opponent’s
assertion of ϕ→ ψ.

George Metcalfe (University of Bern) Giles’s Game and Łukasiewicz Logic February 2011 9 / 36



Rounds

A round with initiator α and respondent β is a transition from one
d-state to a successor d-state consisting of two moves:

1 α chooses one of the formulas ϕ→ ψ asserted by β.

2 Either α attacks ϕ→ ψ by asserting ϕ, and β must assert ψ,
or α grants ϕ→ ψ (will never attack that occurrence.)

The occurrence of ϕ→ ψ is removed from the assertions of β.

We make use of intermediary states (i-states), denoting the initiator’s
choice of the formula that gets attacked or granted by underlining.
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Implication Rules

[Γ ∆, ϕ→ ψ]

[ϕ, Γ ∆, ψ] [Γ ∆]

[ϕ→ ψ, Γ ∆]

[ψ, Γ ∆, ϕ]

[ϕ→ ψ, Γ ∆]

[Γ ∆]
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Whose Turn Is It?

A regulation ρ maps non-elementary d-states to a label Y or I,
meaning “You / I initiate the next round."

A regulation is consistent if a d-state is mapped to Y (or I) only when
an initiating move is possible for you (or me).
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Game Forms and Games

A game form G([Γ ∆], ρ) is a tree of states where

the root is the initial d-state [Γ ∆]

the successor nodes to any state S are the states resulting from
legal moves at S according to the consistent regulation ρ

the leaf nodes are the reachable elementary states.

A game consists of a game form G([Γ ∆], ρ) together with a risk
assignment 〈·〉, and a run of the game is a branch of G([Γ ∆], ρ).
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Example

If it is my turn to move in the d-state [p → q a→ b, c → d ], then I
must either attack or grant your statement p → q, giving

[p → q a → b, c → d ]I

[p → q a → b, c → d ]I

[q p, a → b, c → d ]

or [p → q a → b, c → d ]I

[p → q a → b, c → d ]I

[ a → b, c → d ].
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Example (Continuted)

If it is your turn to move, there are four possibilities:

[p → q a→ b, c → d ]Y

[p → q a→ b, c → d ]Y

[p → q,a b, c → d ]

or [p → q a→ b, c → d ]Y

[p → q a→ b, c → d ]Y

[p → q c → d ]

or [p → q a→ b, c → d ]Y

[p → q a→ b, c → d ]Y

[p → q, c a→ b,d ]

or [p → q a→ b, c → d ]Y

[p → q a→ b, c → d ]Y

[p → q a→ b].
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Winning

Suppose that a run of G([Γ ∆], ρ) with risk assignment 〈·〉 ends with
the elementary state [a1, . . . ,am b1, . . . ,bn].

I win in that run if I do not expect any loss resulting from betting on the
corresponding elementary experiments, i.e., if

〈a1, . . . ,am〉 ≥ 〈b1, . . . ,bn〉.
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Strategies

A strategy (for me) is obtained from a game form by (iteratively from
the root) deleting all but one successor of every state labelled I.

A strategy for a game form G([Γ ∆], ρ) is a winning strategy (for me)
for a risk assignment 〈·〉 if 〈a1, . . . ,am〉 ≥ 〈b1, . . . ,bn〉 holds for each
of its leaf nodes [a1, . . . ,am b1, . . . ,bn].
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Example (1)

Consider a game form G([p → q p → q], ρ).

If ρ([p → q p → q]) = Y, then the strategy

[p → q p → q]Y

[p → q p → q]Y

[p → q,p q]I

[p → q,p q]I

[q,p p,q]

[p → q ]I

[p → q ]I

[ ]

is winning for any risk assignment 〈·〉
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Example (2)

However, if ρ([p → q p → q]) = I, then the strategies

[p → q p → q]I

[p → q p → q]I

[q p,p → q]Y

[q p,p → q]Y

[q,p p,q] [q p]

[p → q p → q]I

[p → q p → q]I

[ p → q]Y

[ p → q]Y

[p q] [ ]

are winning only if 〈q〉 ≥ 〈p〉 and 〈p〉 ≥ 〈q〉, respectively.
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Other Connectives

[Γ ∆, ϕ ∨ ψ]

[Γ ∆, ϕ]

[Γ ∆, ϕ ∨ ψ]

[Γ ∆, ψ]

[ϕ ∨ ψ, Γ ∆]

[ϕ, Γ ∆] [ψ, Γ ∆]

[Γ ∆, ϕ ∧ ψ]

[Γ ∆, ϕ] [Γ ∆, ψ]

[ϕ ∧ ψ, Γ ∆]

[ϕ, Γ ∆]

[ϕ ∧ ψ, Γ ∆]

[ψ, Γ ∆]

[Γ ∆, ϕ� ψ]

[Γ ∆, ϕ, ψ]

[Γ ∆, ϕ� ψ]

[Γ ∆,⊥]

[ϕ� ψ, Γ ∆]

[ϕ,ψ, Γ ∆] [⊥, Γ ∆]
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Łukasiewicz Logic

Łukasiewicz logic Ł is an infinite-valued logic introduced by Jan
Łukasiewicz in the 1920s, now considered to be one of the
“fundamental fuzzy logics”.

J. Łukasiewicz and A. Tarski. Untersuchungen über den Aussagenkalkül.
Comptes Rendus des Séances de la Societé des Sciences et des Lettres
de Varsovie, Classe III, 23, 1930.

Ł and its algebraic semantics MV-algebras enjoy close
relationships with lattice-ordered abelian groups, rational
polyhedra, C∗-algebras, Ulam and Giles games, etc.
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Syntax and Semantics

Formulas are built using→ and ⊥, and we also define:

¬ϕ = ϕ→ ⊥ ϕ� ψ = ¬(ϕ→ ¬ψ)
ϕ ∨ ψ = (ϕ→ ψ)→ ψ ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ).

An Ł-valuation is a function v from formulas to [0,1] satisfying

v(⊥) = 0 and v(ϕ→ ψ) = min(1,1− v(ϕ) + v(ψ))

where also, by calculation

v(¬ϕ) = 1− v(ϕ) ϕ� ψ = max(0, v(ϕ) + v(ψ)− 1)
v(ϕ ∨ ψ) = max(v(ϕ), v(ψ)) ϕ ∧ ψ = min(v(ϕ), v(ψ)).

A formula ϕ is Ł-valid if v(ϕ) = 1 for all Ł-valuations v .
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Giles and Łukasiewicz

Theorem (Giles)
The following are equivalent for any formula ϕ:

1 ϕ is Ł-valid.
2 I have a winning strategy for the game G([ ϕ], ρ) with any risk

assignment 〈·〉, where ρ is an arbitrary consistent regulation.
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Disjunctive Strategies

A state disjunction is written

D = S1
∨
. . .

∨
Sn.

A disjunctive strategy for D respecting a regulation ρ is a tree of state
disjunctions with root D and two kinds of non-leaf nodes

1 Playing nodes, focussed on some component Si of D, where the
successor nodes are like those for Si in strategies, except for the
presence of additional components (that remain unchanged).

2 Duplicating nodes, where the single successor node is obtained
by duplicating one of the components in D.
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Disjunctive Winning Strategies

A disjunction of elementary states D is winning (for me) if for every
risk assignment 〈·〉

〈a1, . . . ,am〉 ≥ 〈b1, . . . ,bn〉

for some [a1, . . . ,am b1, . . . ,bn] in D.

A disjunctive winning strategy (for me) for G([Γ ∆], ρ) is a
disjunctive strategy such that every leaf node is winning.
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Example

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]Y
W

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]I
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]I

[ p → q]Y
W

[ q → p]Y

[ p → q]Y
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[q p] [p q]
W

[ ]

[ ]
W

[ q → p]Y

[ ]
W

[ q → p]Y

[ ]
W

[q p] [ ]
W

[ ].

George Metcalfe (University of Bern) Giles’s Game and Łukasiewicz Logic February 2011 26 / 36



Example

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]Y
W

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]I
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]I

[ p → q]Y
W

[ q → p]Y

[ p → q]Y
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[q p] [p q]
W

[ ]

[ ]
W

[ q → p]Y

[ ]
W

[ q → p]Y

[ ]
W

[q p] [ ]
W

[ ].

George Metcalfe (University of Bern) Giles’s Game and Łukasiewicz Logic February 2011 26 / 36



Example

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]Y
W

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]I
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]I

[ p → q]Y
W

[ q → p]Y

[ p → q]Y
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[q p] [p q]
W

[ ]

[ ]
W

[ q → p]Y

[ ]
W

[ q → p]Y

[ ]
W

[q p] [ ]
W

[ ].

George Metcalfe (University of Bern) Giles’s Game and Łukasiewicz Logic February 2011 26 / 36



Example

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]Y
W

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]I
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]I

[ p → q]Y
W

[ q → p]Y

[ p → q]Y
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[q p] [p q]
W

[ ]

[ ]
W

[ q → p]Y

[ ]
W

[ q → p]Y

[ ]
W

[q p] [ ]
W

[ ].

George Metcalfe (University of Bern) Giles’s Game and Łukasiewicz Logic February 2011 26 / 36



Example

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]Y
W

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]I
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]I

[ p → q]Y
W

[ q → p]Y

[ p → q]Y
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[q p] [p q]
W

[ ]

[ ]
W

[ q → p]Y

[ ]
W

[ q → p]Y

[ ]
W

[q p] [ ]
W

[ ].

George Metcalfe (University of Bern) Giles’s Game and Łukasiewicz Logic February 2011 26 / 36



Example

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]Y
W

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]I
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]I

[ p → q]Y
W

[ q → p]Y

[ p → q]Y
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[q p] [p q]
W

[ ]

[ ]
W

[ q → p]Y

[ ]
W

[ q → p]Y

[ ]
W

[q p] [ ]
W

[ ].

George Metcalfe (University of Bern) Giles’s Game and Łukasiewicz Logic February 2011 26 / 36



Example

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]Y
W

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]I
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]I

[ p → q]Y
W

[ q → p]Y

[ p → q]Y
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[q p] [p q]
W

[ ]

[ ]
W

[ q → p]Y

[ ]
W

[ q → p]Y

[ ]
W

[q p] [ ]
W

[ ].

George Metcalfe (University of Bern) Giles’s Game and Łukasiewicz Logic February 2011 26 / 36



Example

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]Y
W

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]I
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]I

[ p → q]Y
W

[ q → p]Y

[ p → q]Y
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[q p] [p q]
W

[ ]

[ ]
W

[ q → p]Y

[ ]
W

[ q → p]Y

[ ]
W

[q p] [ ]
W

[ ].

George Metcalfe (University of Bern) Giles’s Game and Łukasiewicz Logic February 2011 26 / 36



Example

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]Y
W

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]I
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]I

[ p → q]Y
W

[ q → p]Y

[ p → q]Y
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[q p] [p q]
W

[ ]

[ ]
W

[ q → p]Y

[ ]
W

[ q → p]Y

[ ]
W

[q p] [ ]
W

[ ].

George Metcalfe (University of Bern) Giles’s Game and Łukasiewicz Logic February 2011 26 / 36



Example

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]Y
W

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]I
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]I

[ p → q]Y
W

[ q → p]Y

[ p → q]Y
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[q p] [p q]
W

[ ]

[ ]
W

[ q → p]Y

[ ]
W

[ q → p]Y

[ ]
W

[q p] [ ]
W

[ ].

George Metcalfe (University of Bern) Giles’s Game and Łukasiewicz Logic February 2011 26 / 36



Example

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]Y
W

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]I
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]I

[ p → q]Y
W

[ q → p]Y

[ p → q]Y
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[q p] [p q]
W

[ ]

[ ]
W

[ q → p]Y

[ ]
W

[ q → p]Y

[ ]
W

[q p] [ ]
W

[ ].

George Metcalfe (University of Bern) Giles’s Game and Łukasiewicz Logic February 2011 26 / 36



Example

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]Y
W

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]I
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]I

[ p → q]Y
W

[ q → p]Y

[ p → q]Y
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[q p] [p q]
W

[ ]

[ ]
W

[ q → p]Y

[ ]
W

[ q → p]Y

[ ]
W

[q p] [ ]
W

[ ].

George Metcalfe (University of Bern) Giles’s Game and Łukasiewicz Logic February 2011 26 / 36



Example

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]Y
W

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]I
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]I

[ p → q]Y
W

[ q → p]Y

[ p → q]Y
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[q p] [p q]
W

[ ]

[ ]
W

[ q → p]Y

[ ]
W

[ q → p]Y

[ ]
W

[q p] [ ]
W

[ ].

George Metcalfe (University of Bern) Giles’s Game and Łukasiewicz Logic February 2011 26 / 36



Example

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]Y
W

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]I
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]I

[ p → q]Y
W

[ q → p]Y

[ p → q]Y
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[q p] [p q]
W

[ ]

[ ]
W

[ q → p]Y

[ ]
W

[ q → p]Y

[ ]
W

[q p] [ ]
W

[ ].

George Metcalfe (University of Bern) Giles’s Game and Łukasiewicz Logic February 2011 26 / 36



Example

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]Y
W

[ (p → q) ∨ (q → p)]Y

[ (p → q) ∨ (q → p)]I
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]Y

[ p → q]Y
W

[ (p → q) ∨ (q → p)]I

[ p → q]Y
W

[ q → p]Y

[ p → q]Y
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[ q → p]Y

[p q]
W

[q p] [p q]
W

[ ]

[ ]
W

[ q → p]Y

[ ]
W

[ q → p]Y

[ ]
W

[q p] [ ]
W

[ ].

George Metcalfe (University of Bern) Giles’s Game and Łukasiewicz Logic February 2011 26 / 36



Giles and Łukasiewicz Again

Theorem (Fermüller and Metcalfe)
The following are equivalent for any formula ϕ:

1 ϕ is Ł-valid.
2 I have a disjunctive winning strategy for the game G([ ϕ], ρ) for an

arbitrary consistent regulation ρ.
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Sequents

A sequent is an ordered pair of finite multisets of formulas Γ and ∆,
written Γ⇒ ∆ (essentially, a dialogue state).

The following sequent rules represent elements of a strategy:

Γ⇒ ∆
Γ, ϕ→ ψ ⇒ ∆

Γ, ψ ⇒ ϕ,∆

Γ, ϕ→ ψ ⇒ ∆

Γ⇒ ∆ Γ, ϕ⇒ ψ,∆

Γ⇒ ϕ→ ψ,∆

Let SŁ be the sequent calculus consisting of these rules plus

Γ,⊥, . . . ,⊥︸ ︷︷ ︸
n

,∆⇒ ∆, ϕ1, . . . , ϕn

Γ, ϕ⇒ ϕ,∆

Γ⇒ ∆

Theorem (Adamson and Giles)
ϕ is Ł-valid iff ⇒ ϕ is derivable in SŁ.

A. Adamson and R. Giles. A Game-Based Formal System for Ł∞.
Studia Logica 1(38) (1979), 49–73.
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Hypersequents

A hypersequent G is a finite multiset of sequents, written

Γ1 ⇒ ∆1 | . . . | Γn ⇒ ∆n

(essentially, a state disjunction).

A. Avron. A constructive analysis of RM.
Journal of Symbolic Logic 52(4) (1987), 939–951.
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Disjunctive Strategies as Proofs

Similarly to Adamson and Giles, we have implication rules

G | Γ ⇒ ∆

G | Γ, ϕ→ ψ ⇒ ∆

G | Γ, ψ ⇒ ϕ,∆

G | Γ, ϕ→ ψ ⇒ ∆

G | Γ ⇒ ∆ G | Γ, ϕ⇒ ψ,∆

G | Γ ⇒ ϕ→ ψ,∆

We also need duplication rules

G | Γ ⇒ ∆ | Γ ⇒ ∆

G | Γ ⇒ ∆

G . . . G
G

Notice: a disjunctive strategy for [Γ ∆] “is” a proof of Γ⇒ ∆ from
atomic hypersequents using the implication and duplication rules.
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Disjunctive Winning Strategies as Proofs

Theorem (Fermüller and Metcalfe)
The following are equivalent:

1 There is a proof of Γ⇒ ∆ from winning atomic hypersequents
using the implication and duplication rules.

2 There exists a disjunctive winning strategy for me for G([Γ ∆], ρ)
for any consistent regulation ρ.
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The Hypersequent Calculus GŁ

Axioms
G | ϕ⇒ ϕ

(ID)
G | ⇒

(EMP)

G | ⊥ ⇒ ϕ
(⊥⇒)

Structural Rules:

G
G | Γ⇒ ∆

(EW)
G | Γ⇒ ∆ | Γ⇒ ∆

G | Γ⇒ ∆
(EC)

G | Γ1 ⇒ ∆

G | Γ1, Γ2 ⇒ ∆
(WL)

G | Γ1, Γ2 ⇒ ∆1,∆2

G | Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2
(SPLIT)

G | Γ1 ⇒ ∆1 G | Γ2 ⇒ ∆2

G | Γ1, Γ2 ⇒ ∆1,∆2
(MIX)

Logical Rules

G | Γ, ψ ⇒ ϕ,∆

G | Γ, ϕ→ ψ ⇒ ∆
(→⇒)Ł

G | Γ⇒ ∆ G | Γ, ϕ⇒ ψ,∆

G | Γ⇒ ϕ→ ψ,∆
(⇒→)Ł

G. Metcalfe, N. Olivetti, and D. Gabbay. Sequent and hypersequent calculi for abelian and
Łukasiewicz logics. ACM Transactions on Computational Logic, 6(3):578–613, 2005.
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Example

q ⇒ q (ID) p ⇒ p (ID)

q,p ⇒ p,q (MIX)

q,q → p ⇒ p (→⇒)Ł

q ⇒ q (ID) p ⇒ p (ID)

q,p ⇒ p,q (MIX)

q,q → p,p ⇒ p,q (WL)

q,q → p ⇒ p,p → q (⇒→)Ł

(p → q)→ q,q → p ⇒ p
(→⇒)Ł
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Variants of the Game

We can have different

winning conditions (e.g., for classical logic, n-valued logics)

dialogue rules (e.g., for abelian logic, Chang’s logic)

structures (e.g., for Gödel logic, product logic).
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Some Remarks on First-Order Łukasiewicz Logic

First-order Łukasiewicz logic – where ∀ and ∃ are interpreted by
infs and sups, respectively – is not recursively enumerable.
Let GŁ∀ be GŁ extended with standard quantifier rules

G | Γ⇒ ϕ(a), ∆

G | Γ⇒ (∀x)ϕ(x), ∆

G | Γ, ϕ(t)⇒ ∆

G | Γ, (∀x)ϕ(x)⇒ ∆

G | Γ⇒ ϕ(t), ∆

G | Γ⇒ (∃x)ϕ(x), ∆

G | Γ, ϕ(a)⇒ ∆

G | Γ, (∃x)ϕ(x)⇒ ∆

where a is a free variable not occurring in the premises.

GŁ∀ extended with a cut rule is complete with respect to algebraic
semantics but does not admit cut-elimination.

However, a first-order formula ϕ is Ł-valid iff ⊥ ⇒
n︷ ︸︸ ︷

ϕ, . . . , ϕ is
derivable in GŁ∀ for all n ≥ 1.

M. Baaz and G. Metcalfe. Herbrand’s Theorem, Skolemization, and Proof Systems
for Łukasiewicz Logic. Journal of Logic and Computation 20 (2010), 35–54.
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Concluding Remarks

Giles’s game provides a natural home for the proof theory of
Łukasiewicz logic.

Proofs in a hypersequent calculus correspond to disjunctive
strategies for the game.

Disjunctive strategies might provide a more flexible framework for
investigating relationships between games and proof theory.
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