Implications as rules in dialogues

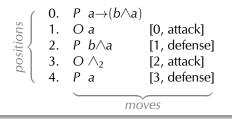
Thomas Piecha (joint work with Peter Schroeder-Heister)

> University of Tübingen Wilhelm-Schickard-Institute

Tübingen – February 26, 2011

Dialogues

A dialogue for $a \rightarrow (b \land a)$



Argumentation forms

X and *Y*, where $X \neq Y$, are variables for *P* and *O*.

implication \rightarrow :assertion: $XA \rightarrow B$
attack:YA
defense:conjunction \wedge :assertion: $XA_1 \wedge A_2$
attack: $Y \wedge_i$
defense:(Y chooses i = 1 or i = 2)
defense:

Dialogues

Dialogue (1)

- A dialogue is a sequence of moves
- (i) where *P* and *O* take turns,
- (ii) according to the argumentation forms,
- (iii) and *P* makes the first move.

Dialogue (2)

- (D) P may assert an atomic formula only if it has been asserted by O before.
- (*E*) O can only react on the immediately preceding *P*-move.
- (plus some other conditions)
- A dialogue beginning with PA is called dialogue for the formula A.

Argumentation forms P/O-symmetric.

Asymmetry between proponent P and opponent O due to (D) and (E).

Dialogues

P wins a dialogue

- P wins a dialogue for a formula A if
- (i) the dialogue is finite,
- (ii) begins with the move *PA* and
- (iii) ends with a move of *P* such that *O* cannot make another move.

Example, dialogue won by P

0.	Р	$(a \lor b) \rightarrow \neg \neg (a \lor b)$
----	---	---

- 1. $O a \lor b$ [0, A]
- 2. $P \lor [1, A]$
- 3. O a [2, D] 4. $P \neg \neg (a \lor b)$ [1, D]
- 5. $O \neg (a \lor b)$ [4, *A*] 6. *P* $a \lor b$ [5, *A*]
- 6. $P a \lor b$ 7. $O \lor$
- 7. $O \lor$ [6, A] 8. P a [7, D]

Dialogue not won by <i>P</i>						
0.	$P (a \lor b) \rightarrow \neg \neg (a \lor b)$					
1.	O a∨b	[0, <i>A</i>]				
2.	$P \neg \neg (a \lor b)$	[1, <i>D</i>]				
3.	$O \neg (a \lor b)$	[2, <i>A</i>]				
4.	P a∨b	[3, <i>A</i>]				

Strategies

Strategy

A dialogue tree contains all possible dialogues for A as paths. P O P P P P PP

A strategy for a formula A is a subtree S of the dialogue tree for A such that

- (i) *S* does not branch at even positions (i.e. at *P*-moves),
- (ii) S has as many nodes at odd positions as there are possible moves for O,

 $\begin{array}{c|c} O & O \\ P & P & P \\ \end{array}$

(iii) all branches of *S* are dialogues for *A* won by *P*.

Database perspective: Clausal definitions

Definitional clause (for atomic a)

A definitional clause is an expression of the form

 $a \leftarrow B_1 \land \ldots \land B_n$

for $n \ge 0$, where *a* is atomic and B_i can be complex.

Clausal definition

A finite set \mathcal{D} of definitional clauses

$$\mathcal{D}\left\{\begin{array}{l}a\leftarrow\Delta_1\\\vdots\\a\leftarrow\Delta_k\end{array}\right.$$

is a *definition* of *a*, where $\Delta_i = B_1^i \land \ldots \land B_{n_i}^i$ is the body of the *i*-th clause.

Definitional closure and reflection

For a given definition

$$\mathcal{D}\left\{\begin{array}{l} \mathbf{a} \leftarrow \Delta_1\\ \vdots\\ \mathbf{a} \leftarrow \Delta_k \end{array}\right.$$

we have for sequents:

Principle of definitional closure $(\vdash D)$

$$\frac{\Gamma\vdash \Delta_i}{\Gamma\vdash a} (\vdash \mathcal{D})$$

Principle of definitional reflection $(\mathcal{D} \vdash)$

$$(\mathcal{D}\vdash) \frac{\Gamma, \Delta_1 \vdash C \dots \Gamma, \Delta_k \vdash C}{\Gamma, a \vdash C}$$

(for propositional atoms; for first-order a proviso is needed)

Definitional closure and reflection

In sequent calculus:

Proof theory is extended to atomic formulas.

Proofs do not have to begin with atomic formulas.

Implications in definition (database/logic program) read as rules.

Symmetry at level of definitional closure/reflection.

For dialogues:

Add end-rule for complex formulas.

Equivalent to sequent calculus with complex initial sequents.

Extend to (definitional) reasoning for atomic formulas.

P/O-symmetry will obtain.

C-dialogues

C-dialogue

A C-dialogue is a dialogue with the condition (end-rule)

(C) O can attack a formula A if and only if(i) A has not yet been asserted by O, or(ii) A has already been attacked by P.

The notions 'dialogue won by *P*', 'dialogue tree' and 'strategy' as defined for dialogues are directly carried over to the corresponding notions for C-dialogues.

Difference dialogue / C-dialogue won by *P*:

- (i) Dialogue can only end with assertion of atomic formula,
- (ii) whereas C-dialogue ends with assertion of a complex or atomic formula.

C-dialogues

Example, C-strategy for $(a \lor b) \rightarrow \neg \neg (a \lor b)$

0. $P(a \lor b) \rightarrow \neg \neg (a \lor b)$ 1. $O a \lor b$ [0, A] 2. $P \neg \neg (a \lor b)$ [1, D] 3. $O \neg (a \lor b)$ [2, A] 4. $P a \lor b$ [3, A]

O cannot attack $a \lor b$ since the conditions of (C) are not satisfied:

- (i) $a \lor b$ has already been asserted by O and
- (ii) $a \lor b$ has not been attacked by *P*.

The C-dialogue is won by *P*, and it is a C-strategy for $(a \lor b) \rightarrow \neg \neg (a \lor b)$.

C-dialogues

Complex initial sequent

(Id) $\overline{A \vdash A}$ (A atomic or complex)

Theorem (Isomorphism)

C-strategies and sequent calculus derivations with complex initial sequents are isomorphic.

(Modulo structural inferences, depending on level of precision in trafo.)

(Proof for intuitionistic logic by T. Piecha à la Sørensen/Urzyczyn.)

Important in definitional reasoning where meaning of atomic formulas can be given by complex formulas (corresponds to complex assumptions).

Definitional reasoning

Argumentation form

For each atom *a* defined by
$$\mathcal{D}$$

$$\begin{cases}
a \leftarrow \Delta_1 \\
\vdots \\
a \leftarrow \Delta_k
\end{cases}$$
definitional reasoning: assertion: Xa
attack: $Y\mathscr{D}$
defense: $X\Delta_i$ (X chooses $i = 1, ..., k$)

(' \mathcal{D} ' special symbol indicating attack.)

With $O \mathscr{D} \simeq$ definitional closure $(\vdash \mathcal{D})$; with $P \mathscr{D} \simeq$ definitional reflection $(\mathcal{D} \vdash)$.

Definitional dialogues

Definitional dialogues are C-dialogues

- (i) plus argumenation form of definitional reasoning
- (ii) can start with assertion of atomic formula.

Implications as rules: Argumentation forms

assertion: $O A \rightarrow B$ attack: no attack defense: (no defense) assertion: $O A_1 \land A_2$ attack: $P \wedge_i$ (i = 1 or 2)defense: $O A_i$ assertion: $P A \rightarrow B$ 0? question: choice: $P |A \rightarrow B|$ P C only if $O C \rightarrow (A \rightarrow B)$ beforeattack:O Adefense: P B assertion: $P A_1 \land A_2$ question: choice: $P |A_1 \land A_2|$ O? P C only if $O C \rightarrow (A_1 \land A_2)$ before attack: $O \wedge_i$ (*i* = 1 or 2) defense: $P A_i$

P/O-symmetry of argumentation forms is given up.

Implications as rules: Argumentation forms

assertion: $O A \rightarrow B$ attack: no attack defense: (no defense) assertion: $O A_1 \land A_2$ attack: $P \wedge_i$ (*i* = 1 or 2) defense: $O A_i$ assertion: $P A \rightarrow B$ 0? question: P C only if $O C \rightarrow (A \rightarrow B)$ before choice: $P |A \rightarrow B|$ attack: O A defense: P B Likewise for atoms a: assertion: Рa 0? question: choice: *P C* only if $O \subset a$ before

P/O-symmetry of argumentation forms is given up.

Implications as rules: Dialogues and strategies

Dialogues

- (C') O can question a (complex or atomic) formula A if and only if(i) A has not yet been asserted by O, or(ii) A has already been attacked by P.
- (D') *P* may assert an atomic formula without *O* having asserted it before.
- (*E*) O can only react on the immediately preceding *P*-move. (Strategies defined as before.)

Corresponds to sequent calculus with alternative schema

$$\frac{\Gamma \vdash A}{\Gamma, A \to B \vdash B}$$

Yields 'dialogical' interpretation of implications-as-rules concept.

0.
$$P(a \rightarrow b) \rightarrow ((b \rightarrow c) \rightarrow (a \rightarrow c))$$

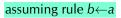
2. P
$$|(a \rightarrow b) \rightarrow ((b \rightarrow c) \rightarrow (a \rightarrow c))|$$

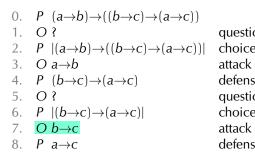
3.
$$O a \rightarrow b$$

4.
$$P(b \rightarrow c) \rightarrow (a \rightarrow c)$$

choice attack defense

question





questionchoiceattack(assuming rule $b \leftarrow a$)defensequestionchoiceattackassuming rule $c \leftarrow b$ defense

0. $P(a \rightarrow b) \rightarrow ((b \rightarrow c) \rightarrow (a \rightarrow c))$ 1. O? question 2. $P |(a \rightarrow b) \rightarrow ((b \rightarrow c) \rightarrow (a \rightarrow c))|$ choice 3. $O a \rightarrow b$ attack 4. $P(b \rightarrow c) \rightarrow (a \rightarrow c)$ defense 5. O? question 6. $P |(b \rightarrow c) \rightarrow (a \rightarrow c)|$ choice 7. $O b \rightarrow c$ attack 8. $P \rightarrow c$ defense 9. O? question 10. $P |a \rightarrow c|$ choice 11. O a attack 12. P c defense

(assuming rule $b \leftarrow a$) (assuming rule $c \leftarrow b$)

0. $P(a \rightarrow b) \rightarrow ((b \rightarrow c) \rightarrow (a \rightarrow c))$ 1. O? question 2. $P |(a \rightarrow b) \rightarrow ((b \rightarrow c) \rightarrow (a \rightarrow c))|$ choice 3. $O a \rightarrow b$ attack (assuming rule $b \leftarrow a$) 4. $P(b \rightarrow c) \rightarrow (a \rightarrow c)$ defense 5. O? question 6. $P |(b \rightarrow c) \rightarrow (a \rightarrow c)|$ choice 7. $O b \rightarrow c$ attack (assuming rule $c \leftarrow b$) defense 8. $P \rightarrow c$ 9. O? question 10. $P |a \rightarrow c|$ choice 11. O a attack defense 12. P c 13. O? question 14. P b choice using rule $c \leftarrow b$

1

0.	$P (a \rightarrow b) \rightarrow ((b \rightarrow c) \rightarrow (a \rightarrow c))$		
1.	O ?	question	
2.	$P (a \rightarrow b) \rightarrow ((b \rightarrow c) \rightarrow (a \rightarrow c)) $	choice	
3.	$O a \rightarrow b$	attack	(assuming rule $b \leftarrow a$)
4.	$P (b \rightarrow c) \rightarrow (a \rightarrow c)$	defense	
5.	O ?	question	
6.	$P (b \rightarrow c) \rightarrow (a \rightarrow c) $	choice	
7.	$O b \rightarrow c$	attack	(assuming rule $c \leftarrow b$)
8.	$P a \rightarrow c$	defense	
9.	O ?	question	
10.	$P a \rightarrow c $	choice	
11.	O a	attack	
12.	Рс	defense	
13.	O ?	question	
14.	Рb	choice	(using rule $c \leftarrow b$)
15.	O ?	question	
16.	P a	choice	using rule $b \leftarrow a$

0.	$P (a \rightarrow b) \rightarrow ((b \rightarrow c) \rightarrow (a \rightarrow c))$		
1.	O ?	question	
2.	$P (a \rightarrow b) \rightarrow ((b \rightarrow c) \rightarrow (a \rightarrow c)) $	choice	
3.	$O a \rightarrow b$	attack	(assuming rule $b \leftarrow a$)
4.	$P (b \rightarrow c) \rightarrow (a \rightarrow c)$	defense	
5.	O ?	question	
6.	$P (b \rightarrow c) \rightarrow (a \rightarrow c) $	choice	
7.	$O b \rightarrow c$	attack	(assuming rule $c \leftarrow b$)
8.	$P a \rightarrow c$	defense	
9.	O ?	question	
10.	$P a \rightarrow c $	choice	
11.	O a	attack	
12.	Рс	defense	
13.	O ?	question	
14.	Рb	choice	(using rule $c \leftarrow b$)
15.	O ?	question	
16.	P a	choice	(using rule $b \leftarrow a$)

O cannot question *Pa* due to (*C*'): a asserted by *O* before and not attacked by *P*. Dialogue is won by *P* and is a strategy for $(a \rightarrow b) \rightarrow ((b \rightarrow c) \rightarrow (a \rightarrow c))$.

No 'Cut-elimination', but subformula property.

Argumentation form for Cut:

assertion: O A (or O ?, ...) attack: P B defense: O B

No 'Cut-elimination', but subformula property.

Argumentation form for Cut: assertion: O A (or O ?, ...) attack: P B defense: O B

0.
$$P a \rightarrow ((a \rightarrow (b \land c)) \rightarrow b)$$

1. O ? [0, question]
2. $P |a \rightarrow ((a \rightarrow (b \land c)) \rightarrow b)|$ [1, choice]
3. $O a$ [2, attack]
4. $P (a \rightarrow (b \land c)) \rightarrow b$ [3, defense]
5. O ? [4, question]
6. $P |(a \rightarrow (b \land c)) \rightarrow b|$ [5, choice]
7. $O a \rightarrow (b \land c)$ [6, attack] (assuming rule $(b \land c) \leftarrow a$)

No 'Cut-elimination', but subformula property.

Argumentation form for Cut: assertion: O A (or O ?, ...) attack: P B defense: O B

0.
$$P \rightarrow ((a \rightarrow (b \land c)) \rightarrow b)$$

1. O ? [0, question]
2. $P \mid a \rightarrow ((a \rightarrow (b \land c)) \rightarrow b) \mid$ [1, choice]
3. $O \rightarrow (b \land c) \rightarrow b \mid$ [3, defense]
5. O ? [4, question]
6. $P \mid (a \rightarrow (b \land c)) \rightarrow b \mid$ [5, choice]
7. $O \rightarrow (b \land c) \mid$ [6, attack] (assuming rule $(b \land c) \leftarrow a$)
8. $P \mid b \land c \mid$ [Cut]

12.

No 'Cut-elimination', but subformula property.

Argumentation form for Cut: assertion: O A (or O ?, ...) attack: P B defense: O B

0.
$$P a \rightarrow ((a \rightarrow (b \land c)) \rightarrow b)$$

1. O ? [0, question]
2. $P |a \rightarrow ((a \rightarrow (b \land c)) \rightarrow b)|$ [1, choice]
3. $O a$ [2, attack]
4. $P (a \rightarrow (b \land c)) \rightarrow b$ [3, defense]
5. O ? [4, question]
6. $P |(a \rightarrow (b \land c)) \rightarrow b|$ [5, choice]
7. $O a \rightarrow (b \land c)$ [6, attack] (assuming rule $(b \land c) \leftarrow a)$
8. $P b \land c$ [Cut]
9. O ? [8, question]
10. $P a$ [9, choice] using rule $(b \land c) \leftarrow a$

No 'Cut-elimination', but subformula property.

Argumentation form for Cut: assertion: O A (or O ?, ...) attack: P B defense: O B

 $P a \rightarrow ((a \rightarrow (b \land c)) \rightarrow b)$ 0. 1. 0 ? [0, question] 2. $P |a \rightarrow ((a \rightarrow (b \land c)) \rightarrow b)|$ [1, choice] 3. O a [2, attack] $P (a \rightarrow (b \land c)) \rightarrow b$ [3, defense] 4. 5. O? [4, question] 6. $P |(a \rightarrow (b \land c)) \rightarrow b|$ [5, choice] $O a \rightarrow (b \land c)$ [6, attack] (assuming rule $(b \land c) \leftarrow a$) 7. $P \ b \land c$ [Cut] 8. O? [8, question] 9. O <u>b∧c</u> [Cut] Ра 10. $P \wedge_1$ [9, attack] [9, choice] (using rule $(b \land c) \leftarrow a$) 11. *O b* [10, defense] 12. *P b* [7, defense]

Conclusions

- (i) Dialogical extension for clausal definitions (databases/logic programs).
- (ii) Implications treated as rules.
- (iii) In dialogical treatment *P*/*O*-symmetry of argumentation forms is given up.